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The problem of obtaining the space-time Fourier transform of the displacement- 
displacement correlation function from the results of a molecular dynamics calculation 
is considered. It is found that the correlation function is most efficiently constructed 
if one selects only one data point from each statistically independent space-time element 
and that noise is suppressed in the Fourier transform if one averages over frequency 
and wavevector, which is equivalent to introducing damping factors in integrals over the 
space and time variables. Results of numerical experiments which support these conclu- 
sions are given and a comment pertaining to the adequacy of a molecular dynamics 
algorithm is made. 

I. INTRODUCTION 

The molecular dynamics MD method, the computer solution of Newton’s 
equations of motion, was first applied by Alder and Wainright [l] to investigate 
the properties of a classical hard sphere system. The method has by now been 
extensively used [2-91. The reason for its popularity is quite simple: It is the most 
direct technique that can be used to calculate time-dependent properties of an 
arbitrary, classical many-body system. In practice, of course, one can only simulate 
the behavior of a finite system during a finite time interval. Even with the most 
powerful modern computers, the limitations are on the order of a few thousand 
particles for ten to one hundred thousand time intervals of the maximum size 
permitted by considerations of numerical stability for the algorithm used to solve 
the differential equations. 

After an MD run, one has available a collection of space-time data points and 
is faced with the task of obtaining as much statistically significant information 
from this data as possible. In this paper, a method for the efficient evaluation of the 
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displacement-displacement (U-U) correlation function and its space-time Fourier 
transform F(q, W) will be described. The fundamental importance of this quantity 
has been emphasized by, for example, Martin [lo] and is now generally appreciated. 
Two concepts are used in our method: (1) The most efficient way to accumulate 
data involves selecting only one data point from each statistically independent 
space-time volume. (2) Noise is suppressed in the Fourier transforms if one averages 
the time and space transforms over frequency and wavevector, respectively. 

To date, we have only applied the data analysis technique to one model problem: 
a linear chain of anharmonic oscillators with a harmonic coupling between nearest 
neighbors. This problem has received considerable attention recently [l l-161 for 
a variety of reasons which are irrelevant here. For our purposes, the attractive 
feature of the model is that the force law is quite simple so forces can be computed 
quickly and rather long MD runs are still economical. 

In the next section we will describe the model and exhibit the usual expression 
for B(q, w). In Section III, reasons for using an alternative expression will be given, 
the alternative will be derived and an efficient numerical procedure for calculating 
the U-U correlation function will be described. Finally, in Section IV, some 
numerical results will be presented and discussed. For convenience, we focus on 
the U-U correlation function only, although the ideas are trivially extended in whole 
to the velocity-velocity (U-V) correlation function and in part to the density- 
density correlation function. 

II. THE PROBLEM 

The interaction potential for the model system is 

where U, is the displacement of the nth particle from its equilibrium position, there 
are N particles and periodic boundary conditions are used so that urJ+* = u, . 
In this model, mass = 1 and time, displacement, temperature T = (v,~), and 
energy may be measured in appropriate units so that c and the dimensionless 
temperature Tare the only parameters needed to cover the whole range of possible 
models of this general form. 

In an MD calculation, one starts the system with initial displacements and 
velocities which are designed to be fairly representative for the desired temperature. 
An algorithm is used which generates the positions at a time t + h from those at t. 
The Verlet [3] central difference algorithm 

un(t + h) = 224) - un(t - h) + mn(t) (2) 
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with h = 0.2 was found to be convenient and adequate. One starts the calculation, 
allows the system to run until any nonrandom initial correlations have died out, 
calls this the zero of time and collects the desired dynamical information from that 
point on. However, we are not concerned here with the technical details of the 
MD method. Such may be found in [l-9]. In the remainder of this paper, it will 
simply be assumed that the displacements u,(jh) are known for n = I, N at the 
times j/r with j = 1, M. 

The quantity S is defined by 

5% a) = Irn dt 1 e-*wre**n(u,(t) u,,(O)), 
--oD n 

where the angular brackets denote an ensemble average, which is equal to the time 
average for an ergodic system. The wavevector q is defined in the usual way as 
q = 27rI/N, -N/2 < 1 < N/2. The symbol 6 is used because this quantity is the 
leading approximation to the dynamic structure factor S(q, o), the Fourier trans- 
form of the density-density correlation function. If the ensemble average is replaced 
by an average over all space and time data points obtained in MD, one obtains 

(u~(II~) U,(O)) = (l/NM) 5 t Ui+j(mh + nh) Uj(mh), 
m=l j=l 

(4) 

where, in space, cyclic boundary conditions have been used and, in time, it is 
assumed that M is sufficiently greater than the interesting range of n so that end 
effects may be ignored. When Eq. (4) is inserted into Eq. (3), it is easy to show that 

where 

WI> WI = (VW I P&J)Y, 

Pd4 = u/279 f e*“j*X,(jh) 
j-1 

(5) 

(6) 

and 

X&) = (I/w/*) i: elWm(t). (7) 
n-1 

Equations (5)-(7) are rather convenient for the calculation of P(q, w) for one 
particular value of q, since X,(1) can be evaluated at each time step and no reuse 
or even saving of intermediate data is required. 

A plot of ,!P(O, w) obtained from the straightforward application of Eqs. (Q-o-() 
for runs using between 500 and 10,000 time steps are shown in Figs. la-Id. All 
are for 1000 particles. Although their values are irrelevant for our purposes here, 
the temperature was T = 1.082 and the nearest neighbor force constant was 
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c = 0.25. These three values and the choice q = 0 will be the only cases treated 
here. It is obvious that there is a problem associated with the graphs of Fig. 1: 
The results appear to be mostly noise, and the noise increases as the time span 
increases although one would expect this to result in better statistical reliablility. 
Such noise is also apparent in the plots of [6]. 

a 

500 TIME STEPS 

5000 TIE STEPS 

b 

1000 7IflE STEPS 

lCY300 TM STEPS 

FIG. 1. Sl(O, w) calculated according to Eqs. (5~(7) for four different total time steps between 
500 and 10,000 as indicated on the plots. The intensity is normalized so that the maximum is 
unity. 

The origin of the problem is that (5) is an expression for 9 at precisely one 
frequency and one wavevector. Using this expression is analogous to using a very 
narrow slit width in a high resolution spectroscopy experiment. In either case, 
the signal will be masked by noise. What has been done is to average over 
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neighboring frequencies [6,9] or wavevectors [5] to produce a smoother curve. 
If a Gaussian averaging is used, we can formally define an averaged quantity 

Sl(q, a) = (2/7r)(~l,4,,)‘~~ Jrn dq’ SW dw’ Sl(q - q’, w  - w’) 

x exp[-(q - ~J2/Li~2jemxp[-(w - w’)~/LI~~]. 

It is easy to show that 

(8) 

9(q, 0) = C C C&zh) cos(qj) cos(wnh) exp[-(Ll,nh/2)2] exp[-(d,j/2)2], 
7% j 

(9) 

where 
G(t) = W) %l(W (10) 

has been used to represent the U-U correlation functions and the reflection sym- 
metry of C$(t) aboutj = 0 and t = 0 has been used. 

Thus we see that the concept of using Gaussian averages over frequency and 
wavevector formally leads to the introduction of Gaussian damping factors in 
space and time. These factors effectively set correlations between points which 
are widely separated in space or time equal to zero. Consideration of the correlation 
function in space and time provides an alternate viewpoint for the source of the 
high noise level associated with the use of (5~(7). The following discussion of this 
viewpoint will be intuitive rather than rigorous, but will later be supplemented by 
supporting evidence from the results of numerical experiments. 

As an illustration, we have computed the correlation function (XP14(t) X,&O)) 
by summing over all particles according to Eq. (7) at each time step and then 
averaging over every time step according to Eq. (4). The result is shown in Fig. 2a. 
Clearly, everything beyond about 150 time steps is noise. Although it is not shown 
here, the noise level remains essentially constant if the time span of the plot is 
extended, which explains the severe noise problem exhibited in Fig. 1 even for very 
long runs. The time Fourier transform of (X*(t) X,(O)) over the entire range of a 
run is mathematically equivalent to using Eqs. (5~(7). However, in the former 
procedure, it is clear that only the first 150 or so time steps will contribute physically 
meaningful structure to S1, the remainder will all be noise. We have checked that, 
if the transform of (X0(t) X,,(O)) be carried out for the entire time span of the run, 
9 as shown in Fig. 1 is recovered. 

It is now clear why running the MD for a longer period of time T did not make 
Fig. lb an improvement over Fig. la. While the noise level will be reduced like Tr/2, 
the amount of noisy data used in the Fourier transform increases like T. A Gaussian 
damping in time, or equivalently, a Gaussian averaging in frequency, suppresses 
the noisy part of the correlation function and yields physically meaningul results. 
Similar considerations apply to spatial correlations and wavevector averaging. 
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ALL PfmIcLE i-wmxE 

OFE SRWLE/ERCH TIHE STEP 

c 

10.000 II@? STEPS 

flLL PRATICLE AVEflRGE 

OH SfWLE/25 TI?lE STEPS 

b 

10.000 11% STEPS 

TM PRRTICLE WEtWE 

ONE SRWLE/ERCH TIM STEP 

d 

10.000 TIHE STEPS 

TEN PRRTICLE AVEIWCE 

ONE !%HPLE/2S TIE STEPS 

FIG. 2. <x&)&(O)> from a 10,000 time step MD run calculated by various sampling proced- 
ures as indicated on the plots, where ;p,(t) = (l/N)&,(t). The cnrves are normalized to unity 
at I = 0. 

III. EFFICIENT DATA ANALYSIS 

Computation according to Eqs. (5)-(7) and then frequency and wavevector 
averaging requires storage of a large number of q and w  values to be averaged 
at the end of the computation. Indeed, the ultimate accuracy is determined by the 
square root of the number of stored 9(q + q1 , w  + OJJ values for each value of 
q and w. Thus it is desirable to compute Cj which contains all the information 
required to obtain any S1 according to Eq. (9). However, the direct computation 
of the correlation function according to Eq. (4) requires a large number of 
operations and storage. What we will discuss next is a procedure for computing 
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Cj(nh) which makes optimal use of the satistically independent parts of the data. 
The method has the advantage that the amount of storage required is not deter- 
mined by the desired accuracy, but rather by the spatial and temporal coherence 
lengths. 

It is well known [l 1, 13, 151 that spatial coherence for the model system (1) 
extends over only a few lattice sites, except at temperatures which are well below 
that considered here. Thus particles separated by more than this are nearly uncorre- 
lated and, in a chain of length 1000, there are perhaps 100 essentially independent 
segments of length 10. In looking at only one q value (i.e., using an undamped 
1000 particle sum to evaluate X*(t)), one rather than 100 statistically independent 
samples are used. Similar considerations apply to the time Fourier transform. 
Configurations separated by more than a few correlation times are statistically 
independent samples; combining them into one estimate of X,(t) according to (7) 
does not take advantage of this. 

The proper treatment of statistically independent space-time regions is also 
important for the efficient computation of C(t), which, in the MD context, is done 
according to 

(11) 

where {k} and {m} indicate that the summation is over a selected set of Nk and M,, 
k and m values, respectively. Considerations for the optimal selection of the con- 
tents of the sets will be given in the following. 

It is clear that, if all available k and m values are used, this construction requires 
on the order of N x A4 arithmetic operations per (jn) pair, although the exact 
number decreases with increasing IZ. It requires on the order of the square of this 
quantity for all (jn) pairs. For the reasonable values N = 103, M = lo4 this is on 
the order of 1014 arithmetic operations, an obviously prohibitive amount. This 
requirement can be cut down enormously, however. First of all, j and n need only 
span a few space Nj and time N, coherence lengths, respectively, which is about 
Nj x N, = 10 x 300 in the example used so far. This would still leave one with 
the unrealistic requirement of 3 x loll operations except for a second important 
consideration: Only contributions from (km) pairs which are uncorrelated give 
statistically independent contributions to the sum. Thus the k and m values in 
{k} and {m> should span the entire N x M range, but be separated by approxi- 
mately one coherence length in space or time, respectively. This reduces the number 
of operations to a manageable size; furthermore, each operation makes 
a statistically significant contribution to the total so that any additional reduction 
would waste some of the original MD data. 

The storage requirements for constructing Cj by this method are modest; 
one can do the calculations as the system evolves and does not have to save all 
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the Uj(f). TWO arrays need to be stored. One is Nj x N,, for the Cj elements. The 
other is N/(the number of elements in {k} by N&the number of elements in {m}) 
and contains the past Uj(t) values which are still needed to obtain the current contri- 
butions to Cj . 

The effect of different sampling methods is illustrated in Fig. 2 where plots of 
(X0(t) X,,(O)) obtained in four different ways are shown. The raw data for each 

-I 

b 

wJoo TJIK STEPS 

OEM-S 

OElT-200 $ lL ‘: 
t 

O* .o 0.1 
cd2n 

c 

100.000 TM SlEPS 

RI.1 PRmIclE RVEIWGE 

OK SflRlE/EACtl TWL STEP 

d 

1woo TInE STEPS 

FIG. 3. (a) (8,(:)&(O)) from a 4OMI time step MD run calculated using spatial Gaussian 
damping with I/e decay length of five lattice sites. The U-U correlation function was constructed 
from the raw data by sampling every fourth site in space and every 25th in time as an independent 
origin. (b) S(0, o), the Fourier transform of the curve of Fig. 3a with its long time noise suppressed 
by a Gaussian damping factor with a l/e decay time of 200 steps. The intensity is normalized 
so that the maximum is unity. (c) Similar to Fig. 2a except the MD run is extended to 100,000 time 
steps. (d) Related to the curve of Fig. 2a in the same way Fig. 3b is related to the curve of Fig. 3a. 
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plot was the same 104 time steps of the run used to obtain Fig. Id. The displacements 
of all the particles in the chain were used to compute X0(t) in Figs. 2a and 2c, 
while the mean position of ten arbitrary adjacent particles was used in Figs. 2b 
and 2d. Each time step was used in m for Figs. 2a and 2b while m = 1, 26, 51,... 
in Figs. 2c and 2d. In these plots, everything beyond about 150 time steps is noise. 
This is substantiated by comparison with additional studies using M = lo5 and 
the smoothed plot of Fig. 3a to be discussed later. It is clear that there is very little 
difference in the noise level in the four plots of Fig. 2 even though each point in the 
plot of Fig. 2a has 2500 times as many contributions as in Fig. 2d. This substan- 
tiates the claim that the noise level can only be suppressed by the accumulation of 
statistically independent data. 

Finally, the effects of the smoothing procedure are shown in Fig. 3. An inter- 
mediate quantity (X,,(t) X,,(O)) is shown in Fig. 3a, where the averaging symbols 
denote averaging with respect to wavevector only. Wavevector averaging is parti- 
cularly attractive for this model since the spatial coherence length [I 1, 13, 151 is 
known exactly. The contrast with the noise level of Fig. 2 is striking and compares 
very favorably to that of Fig. 3c, which was obtained by extending the run for 
Fig. 2a to lo5 time steps. For the wavevector smoothing (42) = l/5 and, in the 
construction of C(t), {k} = 1, 5, 9 ,..., 997 was used. The frequency averaged, 
with (4,/2) = 200, time Fourier transform of the curve of Fig. 3a is shown in 
Fig. 3b. The contrast with Fig. 1 is more than striking. A similar plot starting with 
the curve of Fig. 2a is shown in Fig. 3d. The noise in this plot could be suppressed 
more by increasing d, , but it is still a considerable improvement over Fig. 1. 
The sl(0, w) curve obtained from Fig. 3c is not shown here, but it is very similar 
to Fig. 3b. 

IV. SUMMARY 

We have shown the desirability of computing correlation functions during 
the analysis of MD data and the importance of using statistically independent 
quantities in this computation. First, averaging Fourier transforms over wave- 
vectors or frequency introduced damping factors in space or time which 
separated statistically uncorrelated data and this averaging can be most 
efficiently implemented if one starts with the correlation function. Second, selection 
of only a few points from each statistically independent space-time volume 
minimized the computational effort required to construct the correlation function 
without diminishing the signal to noise ratio. 

As is obvious from the references, many of the observations made in this paper 
have appeared elsewhere. The correlation function in [8] was constructed using 
selected initial points for m as in Eq. (11). B(q, w) is simply the power spectrum 
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of X, , a familiar [17, 181 practical application of Fourier transforms. The relation 
between frequency averaging and time damping follows from the convolution 
theorem as was noted in [9]. Thus the simple cutoff in time at T, used in [4] and 
[7] is equivalent to averaging in frequency with sin[(o - CO’) TJ(w - co’). Such 
filtering is extensively discussed in works such as [ 171 and [ 181, although the specific 
case of Gaussian averaging is rarely treated, probably because it is difficult to 
accomplish with electrical or electronic circuitry. 

We feel that our major contribution bere has been to point out various con- 
sequences of statistical independence, to note their interconnections and their 
implications for MD data analysis, to recommend numerical procedures for the 
latter and to provide the results of numerical experiments which tested the recom- 
mendations. In addition, while the connection between frequency averaging and 
damping in time was noted in [9] and is implicit in [17, 181 and similar works, we 
have not seen a previous application of the similar relationship between wave- 
vector averaging and spatial damping. 

In addition, we would like to emphasize a point of view, which has also been 
expressed by Hoover and Ashurst 1191, regarding criteria for the adequacy of an 
MD algorithm: It is not necessary that the algorithm solve the initial value problem 
accurately over the entire length of the run. Rather, the solutions must conserve 
energy throughout the entire run, so that one is looking at a unique ensemble, 
but need only be accurate for a time on the order of one temporal coherence length, 
because data separated by longer times are essentially uncorrelated. The presence 
of longer term inaccuracies will be roughly equivalent to averaging over a series 
of short runs with a proper statistical distribution of initial conditions. From this 
viewpoint, we found that the Verlet [3] algorithm had quite good long an short 
term energy conservation, although to see the latter we had to use a higher order 
interpolation formula 

hi,(t) = (1/2)[u,(r + h) - u,(t - h)] - (h2/12)[&& + h) - ii& - h)] (12) 

for the velocity than was used in [3]. 
The application of the concepts of this paper to the construction of the density- 

density correlation function is straightforward, but the numerical implementation 
of the resulting expressions is not as obvious and may prove to be difficult in 
practice. We have not attempted to explore applications to correlation functions 
in liquids. 
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